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Abstract. The CFMIP Diagnostic Codes Catalogue assem-
bles cloud metrics, diagnostics and methodologies, together
with programs to diagnose them from general circulation
model (GCM) outputs written by various members of the
CFMIP community. This aims to facilitate use of the diag-
nostics by the wider community studying climate and cli-
mate change. This paper describes the diagnostics and met-
rics which are currently in the catalogue, together with ex-
amples of their application to model evaluation studies and a
summary of some of the insights these diagnostics have pro-
vided into the main shortcomings in current GCMs. Analysis
of outputs from CFMIP and CMIP6 experiments will also be
facilitated by the sharing of diagnostic codes via this cata-
logue.

Any code which implements diagnostics relevant to
analysing clouds — including cloud—circulation interactions
and the contribution of clouds to estimates of climate sensi-
tivity in models — and which is documented in peer-reviewed
studies, can be included in the catalogue. We very much wel-

come additional contributions to further support community
analysis of CMIP6 outputs.

1 Introduction

Cloud feedback remains the largest source of uncertainty as-
sociated with estimates of climate sensitivity using current
global climate models. Evaluation of clouds is necessary not
only for the assessment of model performance, but also for
understanding how the representation of the key physical
processes contributes to the errors and uncertainties. CFMIP
coordinates various experiments and the production of spe-
cific output variables to help improve our understanding of
cloud—climate feedback mechanisms and processes.

To facilitate the evaluation of clouds in models using satel-
lite observations, CFMIP has developed the CFMIP Observa-
tion Simulator Package (COSP; Bodas-Salcedo et al., 2011).
In addition, new satellite data sets have been produced which
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diagnose cloud properties from the observations in the same
way as is done in the simulator, e.g. by using the same cri-
teria for cloud detection. An example of this is the GCM-
Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO) Cloud Product (GOCCP) de-
scribed in Chepfer et al. (2010). This ensures that discrepan-
cies between models and observations reveal genuine biases
in the models’ simulation of cloud, rather than, for exam-
ple, simply highlighting differences in the definition of cloud
coverage.

A range of methodologies, metrics and diagnostics have
been developed, many of which utilize information on clouds
derived from the observational simulators. Use of these tools
has led to considerable progress being made in understanding
the uncertainties and errors associated with GCM cloud sim-
ulations over the last decade. In order for this understanding
to eventually be reflected in better estimates of cloud feed-
backs and climate sensitivity, it is vital to continue to develop
such tools and to exploit them fully during the model devel-
opment process.

To facilitate the wider use of these tools in the climate
modelling community, repositories have been set up to store
and document the programs which allow their computation.
The CFMIP Diagnostics Code Catalogue lists the up-to-date
repositories. Initially, a collection of repositories was set up
as a part of the EU Cloud Intercomparison, Process Study
& Evaluation Project (EUCLIPSE; http://www.euclipse.eu/
index.html). Subsequent contributions have followed as a re-
sult of advertising the catalogue at various meetings and via
the CFMIP mailing list. Other such collections of diagnos-
tic codes have also been developed. The US CLIVAR MJO
Working Group (Waliser et al., 2009) produced a collection
of diagnostics and metrics for CMIP5 which reflected short-
comings in the representation of processes that may be rele-
vant to the simulation of the MJO (https://www.ncl.ucar.edu/
Applications/mjoclivar.shtml). These scripts were applied to
CMIP5 models to evaluate their simulations of various as-
pects of the Madden—Julian Oscillation (e.g. climate vari-
ability and predictability; see Waliser et al., 2009; Kim et
al., 2009, 2014). The Program for Climate Model Diagno-
sis and Intercomparison (PCMDI) at Lawrence Livermore
National Laboratory has developed common statistical er-
ror measures to compare results from climate model simula-
tions to observations, which have been applied to the CMIP
data (e.g. Gleckler et al., 2008). This collection of well-
established large- to global-scale mean climatological per-
formance metrics provides a baseline analysis package for
CMIP: the PCMDI Metrics Package (PMP; Gleckler et al.,
2016). The Earth System Model eValuation Tool (ESM Val-
Tool; Eyring et al., 2016) has been developed for CMIP6
to enable routine comparisons of single or multiple models,
against either predecessor versions or observations. The cur-
rent priority for PMP and ESMValTool is to target selected
essential climate variables (ECVs; Gleckler et al., 2008; Pin-
cus et al., 2008; Reichler and Kim, 2008), which include rel-
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ative space—time root-mean square errors (RMSEs) for some
cloud and radiation parameters. Among the diagnostics in the
current CFMIP catalogue, the Cloud Regime Error Metric for
the annual mean climatology in the present climate (Williams
and Webb, 2009) has recently been included in ESMValTool.

All of this work contributes to the wider community ef-
forts to improve the representation of models. The World
Climate Research Program (WCRP) Grand Challenges rep-
resent areas of emphasis in climate science where there is
believed to be likelihood of significant progress over the next
5-10 years. One requirement for these areas is to implement
effective and measurable performance metrics, to build and
strengthen collaborations between communities. The CFMIP
Diagnostics Codes Catalogue will contribute to this purpose
for the Clouds, Circulation and Climate Sensitivity Grand
Challenge (Bony et al., 2015).

This paper is a companion paper to the CFMIP descrip-
tion paper for CMIP6 (Webb et al., 2017). In this paper we
describe code repositories and introduce diagnostics which
are currently available in GitHub repositories. A general de-
scription of the repositories is provided in Sect. 2. In Sect. 3
the individual metrics and diagnostics are described and ex-
amples of their application to model development and un-
derstanding uncertainties are presented. Section 4 discusses
some of the insights these diagnostics have provided into the
main shortcomings in current GCMs, together with an out-
line of possible future work in this area.

2 General description of the repositories and the
catalogue

The repositories are maintained and managed by the author
of the associated diagnostic code.

In each repository, a README file and wiki page pro-
vide an introduction to the diagnostic and list the appropriate
references. Different authors use different programming lan-
guages and the codes which are currently in the repository are
provided in their original languages. The code repository is
structured so that a version of the code in a different language
can be placed in a different directory, allowing users to se-
lect the version they prefer to use. Details of each diagnostic,
such as the required input data, the outputs generated by the
program and links to the source of the required observations,
are also provided in the repository. For most diagnostics, the
data are assumed to be in netCDF format, provided that the
variables are requested by either CMIP or CFMIP. Sample
input data and output results are provided in each repository.
If the sample input data size exceeds the GitHub limit, ei-
ther the location information or the contact address of the au-
thor is provided on the Readme page of each repository. Cur-
rently, the application of the repository by the user will vary
according to the diagnostic required: for some diagnostics all
the necessary files are present to enable the user to run a small
demonstration of their use, while others require some pre-
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Table 1. A summary table of diagnostics.
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Diagnostics

Scientific target to evaluate

Does the code read CMIP
data? (i.e. no pre-processing)

Time frequency
of input data

What auxiliary data
are needed/provided?

Klein et al. (2013)

Williams and Webb (2009),
Tsushima et al. (2013) annual
Tsushima et al. (2013) seasonal
Zelinka et al. (2012)

Nam and Quaas (2012)

Konsta et al. (2015)

Nam et al. (2012)

vertical distribution
Nam et al. (2012) albedo

ISCCP global cloud amounts

Annual mean climatology

of cloud regimes
Climatological seasonal cycle
of cloud regimes

Cloud radiative kernels

Zonal plots of GCM cloud
and hydrometeor fraction
Instantaneous A-train

Vertical distribution
of low clouds
SW CRE and PARASOL reflectance

of low clouds

‘Warm rain microphysical
process diagrams

Sensitivity of tropical low-cloud
reflection to SST at various
timescales

Sensitivities of low-cloud

cover to EIS and SST

Lower tropospheric

mixing indices

Suzuki et al. (2015)

Brient and Schneider (2016)

Qu et al. (2014)

Sherwood et al. (2014)

Y Monthly Processed obs
data/Y

Y Daily Processed obs
data/Y

Y Daily Processed obs
data/Y

Y Monthly Radiative
Kernel/Y

Y (post-processing Monthly N/A

done in script)

N 8-hourly N/A

cloud property Or daily

Y (post-processing Monthly N/A

done in script)

Y (post-processing Monthly N/A

done in script)

N 6-hourly Processed obs
data/Y

N Monthly Processed obs
data/Y

Y Monthly N/A

Y Monthly N/A

processing of the model output and auxiliary material. The
input data format and time frequency, and whether any auxil-
iary data are needed and provided, are summarized in Table 1
for the current version of the diagnostics described in this pa-
per. The repositories are likely to evolve over time. To access
the code versions used in this paper, please see the Supple-
ment, where links to all of the GMD-documented diagnos-
tics are listed. There is no selection process for a diagnostic
to be added to this catalogue. The only criterion for inclu-
sion is that the usefulness of the diagnostic has been demon-
strated in a multi-model (or multi-version) comparison in a
peer-reviewed paper and that the code repository is created
in GitHub, following the instructions noted above. Basic in-
structions on how to create a repository are given in https:
//github.com/tsussi/cfmip-diagnostics-code-repository.

3 Description of metrics, diagnostics and
methodologies

Here we describe the diagnostics and metrics which are cur-
rently to be found in the catalogue. For each diagnostic Ta-
ble 1 summarizes its scientific target and the practical de-
tails of its application. We start with diagnostics related to
all types of clouds, followed by those focussed specifically
on low-level cloud. The final group consists of diagnostics
targeted at understanding cloud feedbacks. In this paper the
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term “metric” refers to scalar quantities which can be easily
compared to observations.

3.1 Simulation of ISCCP global cloud amounts (Klein
et al., 2013)

This code is available at https://github.com/mzelinka/
klein2013-cloud-error-metrics.

This is a set of four scalar measures of model fidelity in
simulating clouds, where the observational “truth” is taken
to be the International Satellite Cloud Climatology Project
(ISCCP) cloud fields (Rossow and Schiffer, 1999). These are
root-mean-square differences in the space—time distributions
(i.e. from 60° S to 60° N through the climatological annual
cycle) of cloud variables, normalized by the space—time stan-
dard deviation of the variable from the observations. These
variables are (a) the total cloud amount for clouds with opti-
cal depth >1.3; (b) the amount of optically intermediate and
thick clouds at low, middle and high levels of the atmosphere;
and the impacts of optically intermediate and thick clouds
on top-of-atmosphere (c) shortwave and (d) longwave radi-
ation computed using the cloud radiative kernels (Zelinka et
al., 2012; see Sect. 3.3 below). Figure 1 shows a summary of
these measures of fidelity of CFMIP model simulations in re-
producing the space—time distributions of several cloud mea-
sures, with greater fidelity indicated by smaller values, for
representations of total cloud amount (a), cloud-top pressure

Geosci. Model Dev., 10, 4285-4305, 2017
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Figure 1. Scalar measures of fidelity of CFMIP model simulations in reproducing the space—time distribution of several cloud measures,
with greater fidelity indicated by lower E values. ETcp (a) measures fidelity in simulating total cloud amount, whereas Ectp-t (b) measures
fidelity in simulating cloud-top pressure and optical depth in different categories of optically intermediate and thick clouds at high, middle,
and low levels of the atmosphere. The impacts on top-of-atmosphere shortwave and longwave radiation in the same categories used for Ectp-
T are measured by Egw (c¢) and Epyw (d), respectively. Models are stratified vertically into the two ensembles and are plotted in different
symbol keys. (To identify a model in a symbol key, see Klein et al., 2013.) For the modelling centres in which we can track progress, the
arrow connects the oldest model in the family (arrow base) to the most recent model (arrow tip). The thick black arrow connects the average
measure of CFMIP1 models (arrow base) to that of CFMIP2 models (arrow tip). Arrows pointing to the left indicate improvements with

time. Reprinted from Klein et al. (2013).

and optical depth (b), and the impacts on top-of-atmosphere
shortwave (c¢) and longwave radiation (d). CFMIP1 mod-
els are symbols at the arrow base and CFMIP2 models are
symbols at the arrow top. Arrows pointing to the left in-
dicate improvement with time. The thick black arrow con-
nects the average measure of CFMIP1 models (arrow base)
to that of CFMIP2 models (arrow top). As a point of com-
parison, we also use roughly analogous observations from
the MODerate resolution Imaging Spectrometer (MODIS)
instruments for the period March 2000 through April 2011
(Pincus et al., 2012). In Fig. 1a, the ETca measure between
the MODIS and ISCCP climatologies is 0.47. All model dif-
ferences with ISCCP exceed this value, so it is likely that
errors in the climatology of total cloud amount are robustly
determined. Most individual models and the ensembles as a
whole show progress over time in most measures of simu-
lation fidelity, with small improvements for the representa-
tions of total cloud amount and large improvement for the
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distributions of cloud optical properties and their impact on
shortwave radiation. The diagnostic codes are available at
https://github.com/mzelinka/klein2013-cloud- error-metrics.

3.2 Cloud Regime Error Metric (CREM; Williams and
Webb, 2009; Tsushima et al., 2013)

This code 1is available at
cloud-regime-error-metric.

This is a set of scalar metrics which summarize the over-
all ability of a model to simulate the cloud radiative ef-
fects (CREs) of a set of different cloud regimes. The IS-
CCP observational cloud regimes were obtained using the
KMEANS clustering algorithm (Anderberg, 1973) and an
empirical method to choose the number of clusters (Rossow
etal., 2005). (For details, see Williams and Tselioudis, 2007.)
Using daily mean data the cloud regime assigned to a model
grid box is the observational regime which has the minimum

https://github.com/tsussi/
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Euclidean distance in the vector space of normalized daily
mean cloud-top pressure, optical depth and cloud cover. Each
metric is a single scalar value, so it is easy to compare dif-
ferent models or different versions of the same model. These
metrics can also be broken down into contributions from dif-
ferent cloud regimes (Eq. 1).

M2 = Z?le,-m,-z’ )
n

where n is the total number of the cloud regimes, w is the re-
spective area weight for the region where the regime i is de-
fined (e.g. 20° S—20° N tropics, Northern Hemisphere extra-
tropics beyond 20° N), and m; is the error in simulating the
regime i, which quantifies the distance from the observations,
as defined below.

3.2.1 Evaluation of the annual mean climatology of
cloud regimes

This is a single scalar metric which evaluates the climatolog-
ical annual mean net CRE over the chosen number of cloud
regimes.

The model rms error (RMSE) associated with each regime
i (a; (Wm’z)) can be approximated with two components:
the error in the relative frequency of occurrence (f;’) com-
pared to the observations ( fi”) and the error in the net CRE
when the regime occurs (the in-regime net CRE) (C;’) com-
pared to the observations (C?):

a = (f/CO) + (frC)’. @)

Figure 2 shows changes between the CFMIP-1 and CFMIP-2
models in these error components for the @; in the net CRE
in the tropics (20° S—20° N). Improvements in the CFMIP2
models relative to those in CFMIP1 are seen mainly in the
cloud radiative properties, i.e. in the error components for
the in-regime net CRE ( fC;"), rather than those for the fre-
quency of occurrence (f;'C?). This is especially true for deep
convective cloud, anvil cirrus, stratocumulus, transition and
shallow cumulus cloud regimes.

3.2.2 Evaluation of the climatological seasonal cycle of
cloud regimes

This scalar metric evaluates variations of climatological
monthly mean net CRE over the chosen number of cloud
regimes.

An error in the climatological annual variation of the CRE
for regime i can be caused by an error in the amplitude of the
variation and an error in the pattern (e.g. phase, shape) of the
time variation. The centred rms error of the climatological
seasonal variation of the CRE for regime (s;) relative to the
observations is expressed as

2
Si2 = (U,"m — ai_g) + 2Gi,m0i,o (I1-R), 3
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where 0; , and o; i denote the standard deviation of the cli-
matological monthly mean of observed and modelled CREs
for a regime i from the climatological annual mean, and R is
the linear correlation coefficient between the anomaly (dif-
ference from the annual mean) of the model and that of the
observation over the 12 months of the seasonal cycle. We use
these standard deviations as a measure of the amplitude in the
seasonal variation. The error in the amplitude of the variation
(si,amp) is defined by

Si,amp=0j m— i 0" “4)

The second term of s; is a covariance term between the ob-
servations and the model. We define the error in the pattern
of the time variation (s; cov) as

Si,cov = +/ 2‘71',m‘7i,0 (I1-R) @)

(see Tsushima et al., 2013, for details).

The seasonal variation of the shortwave CRE (SCRE) is
attributable to not only the variation of clouds, but also to
that of the incoming solar radiation. To evaluate the variation
of shortwave radiative components by clouds in models, it
is thus necessary to remove the latter but keep the former.
This is achieved by normalizing the SCRE by the local solar
insolation.

Figure 3 shows the seasonal variation of the normal-
ized SCRE (NSCRE) of cloud regimes in the tropics
(20-20° N) (a), Northern Hemisphere extra-tropics beyond
20°N (b), and Southern Hemisphere extra-tropics beyond
20°S (c) in five CMIP5 models. The seasonal variation of
the NSCRE is relatively well simulated by the models in the
tropics: the largest inter-model spread is in the stratocumu-
lus regime and the main differences between models relate
to variations in the amplitude of the seasonal cycle.

3.3 Cloud radiative kernels (Zelinka et al., 2012)

This code is available at https:/github.com/mzelinka/
cloud-radiative-kernels.

The cloud radiative kernels quantify the sensitivity of the
top-of-atmosphere (TOA) radiative fluxes to cloud fraction
perturbations within the seven cloud-top pressure categories
and seven cloud optical depth categories defined by ISCCP
(Fig. 4). Multiplying the cloud radiative kernels — which are a
function of latitude, month, and surface albedo — by changes
in cloud fraction (segregated on the same cloud-top pressure—
optical depth grid) between two climate states yields a quan-
titative estimate of the cloud-induced TOA radiation anoma-
lies. Normalizing these by the change in global mean surface
temperature between the two climate states then provides a
measure of cloud feedback.

Because the kernels are computed using a single radia-
tive transfer code (Fu and Liou, 1992), differences in cloud
feedbacks among climate models can be unambiguously at-
tributed to inter-model differences in the responses of clouds.

Geosci. Model Dev., 10, 4285-4305, 2017
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larger albedo. Graphs drawn using the values in Table 2 in Tsushima et al. (2013).
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Figure 3. Centred rms error diagrams of the seasonal variation of NSCRE of cloud regimes in (a) 20° S-20° N, (b) northern extra-tropics
beyond 20° N, and (c¢) southern extra-tropics beyond 20° S. Colours distinguish cloud regimes. Marks distinguish models. The dotted lines
are contours of the magnitude of s; (NSCRE). The x-axis shows the contribution of amplitude error, while the y-axis shows the contribution
of pattern errors in the time variation. Reprinted from Tsushima et al. (2013).

Furthermore, because the cloud feedback is computed di-
rectly from changes in cloud fields rather than inferred from
TOA fluxes, no adjustments are necessary to account for non-
cloud-induced radiative flux anomalies. The kernels can also
be applied to a model’s control simulation and observations
(Klein et al., 2013; see Sect. 3.1) to quantify radiative flux er-
rors contributed from different cloud types in a model, or to
two model versions to quantify the impact of the changes in
different cloud types in a new version of the model on errors
in radiative fluxes.

The panels on the right-hand side of Fig. 5 show CFMIP1
slab-ocean simulations’ ensemble mean cloud radiative
feedback contributions from different cloud categories in
(d) longwave, (e) shortwave and (f) net, expressed per unit
change in each model’s global mean surface air temperature
between the two states. These estimates of cloud feedbacks
are produced by multiplying the change in cloud fraction at
each location and month by the collocated radiative kernels.
This figure highlights the various cloud types that contribute

Geosci. Model Dev., 10, 4285-4305, 2017

to the cloud feedback. High cloud changes make large but
opposing contributions to the LW and SW cloud feedbacks.
Low- and mid-level cloud changes, which are negative in
most bins, make a strong positive contribution to the SW
cloud feedback, especially at optical depths greater than 3.6
where the kernel is larger in magnitude. Because these con-
tributions are not strongly opposed in the LW, the net cloud
feedback for mid- and low-level clouds arises primarily from
the SW component.

3.4 Zonal plots of GCM cloud and hydrometeor
fraction compared with CALIPSO-GOCCP and
CloudSat (Nam and Quaas, 2012)

This code is available at https://github.com/chriscnam/
CFMIP_LidarRadar.

This code produces plots of zonally averaged vertical
profiles of cloud fraction and hydrometeor fraction from
the active-sensor satellite observations and models. Comple-

www.geosci-model-dev.net/10/4285/2017/
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Figure 4. Global, annual, and ensemble mean (a) LW, (b) SW,
and (c) net cloud radiative kernels. In each model, the kernels
have been mapped to the control climate’s clear-sky surface albedo
distribution before averaging in space; thus, the average kernels
are weighted by the actual global distribution of clear-sky surface
albedo in each model. Redrawn with modification from Zelinka et
al. (2012).

menting the ISCCP simulator referred to above, the active li-
dar and radar satellite simulators emulate the radiances which
would be retrieved by the CALIPSO and CloudSat instru-
ments within climate models. The active lidar and radar sim-
ulators allow a more accurate comparison of the vertical dis-
tribution of clouds and hydrometeors in climate models with
the CALIPSO-GOCCP and CloudSat 2B-GeoProf data sets
(Marchand et al., 2009). Figure 6 shows the zonally averaged
cloud fraction (top row; Fig. 6a—c) and hydrometeor fraction
(bottom row; Fig. 6d—e) for June—July—August 2007 from
(a) CALIPSO-GOCCEP data; (b) the IPSL5B GCM with the
COSP Lidar Simulator; (¢) the IPSL5B GCM; (d) CloudSat
data; and (e) the IPSL5B GCM with the COSP Radar Sim-
ulator (Nam and Quaas, 2012; Chepfer et al., 2010; Marc-
hand et al., 2009). From these plots, one can identify model
biases such as the overestimate of optically thin high-level
clouds and the significant underestimate of mid-level and

www.geosci-model-dev.net/10/4285/2017/
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(sub)tropical low-level clouds. In addition, it can be seen that
IPSL5B overestimates the frequency of precipitation. These
findings imply that compensating mechanisms in IPSL5B
balance out the radiative imbalance caused by incorrect opti-
cal properties of clouds and consistently large hydrometeors
in the atmosphere, which was also found for ECHAMS in
Nam and Quaas (2012).

3.5 A-train satellite instantaneous cloud property
observations for process-oriented evaluation
(CALIPSO-PARASOL; Konsta et al., 2015)

This code is available at https://github.com/dimitrakonsta/
process-oriented-cloud-evaluation.

These 2-D histograms correlate different cloud variables
from the multi-sensor A-train observations at the instanta-
neous timescale, and at high spatial resolution. This allows
us to see how different key cloud properties vary as a func-
tion of one another (Konsta et al., 2012) and to build pictures
of cloud processes which are well suited for the evaluation of
clouds in climate models.

Specifically, the histogram shows the relationship between
cloud cover from CALIPSO (Winker et al., 2007) and cloud
reflectance measured by PARASOL (Parol et al., 2004),
which is a good surrogate of the cloud optical depth. The
same relationship is reproduced for the model using the
COSP simulator.

Figure 7 provides the instantaneous (upper panels) and
monthly mean (lower panels) relationship between the cloud
cover and the cloud reflectance over the tropical oceans for
the observations (a, d) and as simulated by two versions of
the LMDZ5 model using COSP (b, c, e, f). In the observa-
tions, the cloud reflectance tends to increase with increasing
cloud cover, but the models do not reproduce this relation-
ship in either the instantaneous data or the monthly mean.
However, the two panels show that the relationship between
cloud fraction and cloud optical thickness is very different
when using monthly mean and instantaneous values, both in
observations and in the models. This joint data analysis of
different instantaneous observations allows for a more pre-
cise evaluation of cloud properties and model parameteriza-
tions.
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Figure 5. Global, annual, and ensemble mean cloud fractions for the (a) 1 x CO, and (b) 2 x CO; runs, along with (c) the average difference
expressed per unit change in each model’s global mean surface air temperature between the two states. Matrix resulting from multiplying the
change in cloud fraction at each location and month by the collocated (d) LW, (e) SW, and (f) net cloud radiative kernels, and then taking the
global, annual, and ensemble means. The sum of each matrix is shown in each title. Bins containing an “x” indicate those in which >75%
of the models agree on the sign of the field plotted. Reprinted from Zelinka et al. (2012), © American Meteorological Society. Used with

permission.

3.6 Low-level cloud distribution and optical properties:
CALIPSO, PARASOL, CERES (Nam et al., 2012)

3.6.1 Vertical distribution of low-level clouds

This code is available at https://github.com/chriscnam/
CFMIP_LowCloudDistribution.

These histograms show the frequency of occurrence of
clouds below 4 km over the tropical oceans (30° N-30° S) in
the observations and models (Fig. 8). This diagnostic, from
Nam et al. (2012), identifies non-overlapped (i.e. by mid- and
high-level cloud) low-level clouds within subsiding regimes.
This is done by first identifying where large-scale vertical
velocities at 500 and 700 hPa are greater than 10 hPaday~!;
then distinguishing between shallow cumulus and stratocu-
mulus regimes using the lower tropospheric stability thresh-

Geosci. Model Dev., 10, 4285-4305, 2017

old of 18.55K, as defined in Medeiros and Stevens (2011);
and finally testing whether lidar-defined high- and mid-level
cloud covers are both less than 5 %. The histogram demon-
strates that CMIP5 models tend to concentrate their low
clouds in the lowest 1km of the troposphere, regardless
of the large-scale environment, instead of distributing them
throughout the boundary layer.

3.6.2 Shortwave cloud radiative effect (SW CRE) and
PARASOL reflectance

This code is available at https://github.com/chriscnam/
CFMIP_SWCRE_Parasol.

The poor vertical distributions of low-level clouds shown
above lead to biases in their optical properties, which can
be quantified using this diagnostic: the mean SW CRE and

www.geosci-model-dev.net/10/4285/2017/
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Used with permission.

PARASOL reflectance broken down into different cloud frac-
tion bins (Fig. 9). The comparison of shortwave cloud ra-
diative effects from various CMIP5 models with CERES
TOA fluxes as well as PARASOL reflectance above the non-
overlapped low clouds (Fig. 9) show that models overesti-
mate the cloud radiative effects compared to observations,
even for comparable cloud fractions and large-scale environ-
mental conditions (Nam et al., 2012).

3.7 Warm rain microphysical process diagrams
(Suzuki et al., 2015)

This code is available at https://github.com/kntrszk/cfodd.
This diagnostic plots vertical profiles of radar reflectiv-
ity in the form of a contoured frequency diagram as a func-
tion of in-cloud optical depth (ICOD). The radar reflectivity
is obtained from the CloudSat 2B-GEOPROF product (e.g.
Marchand et al., 2008) and the cloud optical depth is ob-
tained from the MODIS cloud product (e.g. Platnick et al.,
2003; Nakajima et al., 2010). The diagram is constructed
from the probability density function (PDF) of radar reflec-
tivity at each ICOD bin, and shows the PDFs as the contoured
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frequency of radar reflectivity as a function of ICOD, which
is referred to as the Contoured Frequency by Optical Depth
Diagram (CFODD). The ICOD is determined by a vertical
slicing of the total cloud optical thickness from MODIS into
each radar bin according to the adiabatic growth assumption
that provides a scaling function of the optical depth with
respect to geometric height. When the statistics thus con-
structed are further classified according to the cloud-top par-
ticle size also obtained from MODIS (Platnick et al., 2003;
Nakajima et al., 2010), the vertical microphysical struc-
ture and its microphysical transition from non-precipitating
through drizzling to raining are clearly depicted (Suzuki et
al., 2010; Nakajima et al., 2010), as shown in Fig. 10 (top
panel). Corresponding statistics are also constructed from
model output of satellite cloud observables obtained with the
aid of appropriate satellite signal simulators such as CFMIP
Observation Simulation Package (COSP; Bodas-Salcedo et
al., 2011) and Satellite Data Simulation Unit (SDSU; Ma-
sunaga et al., 2010). The model-derived statistics thus syn-
thesized (Fig. 10, lower panels) are then compared with the
satellite-based statistics to identify key model biases in rep-
resenting warm rain formation process characteristics. Ex-

Geosci. Model Dev., 10, 4285-4305, 2017
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Figure 7. Two-dimensional histograms of cloud reflectance and cloud cover over the tropical oceans using instantaneous data (upper panels)
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amples of such an analysis with two CMIP5 models, shown
in Fig. 10, demonstrate how some models share a common
bias of “overly early rain formation” that happens even when
the cloud-top particle sizes are small, in stark contrast to the
satellite statistics (Suzuki et al., 2015).

3.8 Sensitivity of tropical low-cloud reflection to
surface temperature change at various timescales
(Brient and Schneider, 2016)

Codes for this diagnostic are available at https://github.com/
florentbrient/Cloud- variability-time-frequency and https://
github.com/florentbrient/ECS-Constraint.

This diagnostic calculates covariances of time series of any
cloud-related variable (e.g. low-cloud albedo «, low-cloud
fraction) and that of sea surface temperature 7' (robust re-
gression slope, correlation coefficients).

Brient and Schneider (2016) estimated the sensitivity of
the reflectance of tropical low clouds (TLCs) to the underly-
ing surface temperature change at intra-annual, seasonal and
interannual timescales in the observations and CMIP5 mod-
els. As shown in Fig. 11, they found that in the observations
on all timescales shortwave reflection by TLC decreases ro-
bustly when the underlying surface warms. They also showed
that in simulations of the warmer climate reached after qua-
drupling carbon dioxide concentrations, higher sensitivity

Geosci. Model Dev., 10, 4285-4305, 2017

(HS) models project a reduction of TLC reflection, whereas
lower sensitivity (LS) models project less change or even an
increase. The models’ equilibrium climate sensitivity (ECS)
correlates significantly with the sensitivity of cloud reflection
to the underlying surface temperature warming (53 % of the
variance). Additionally, the spread in temporal covariance
of low-cloud reflection with surface temperature in current
climate simulations explains about half of the ECS variance
across models. Therefore, recent space-based measurements
of shortwave radiation permit estimation of a more likely
range of ECS values, highlighting that ECS values below
2.3 K appear very unlikely. Code is provided to calculate a set
of diagnostics based upon the covariance of two time series
(robust regression slope, correlation coefficients); separation
of timescales is achieved by applying low-pass and high-
pass filters. The calculation by the code also provides the
uncertainty range underlying the covariance through a sta-
tionary bootstrap procedure. An additional program is used
to constrain the more likely range of ECS values by weight-
ing models’ ability to reproduce the observed covariance be-
tween TLC reflection and sea surface temperature.

www.geosci-model-dev.net/10/4285/2017/
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3.9 Sensitivities of low-cloud cover to estimated
inversion strength and sea surface temperature (Qu
et al., 2014)

This code is available at https:/github.com/xinqu2016/
SST-and-EIS-slopes.

This metric calculates the sensitivity of tropical marine
low-cloud cover (LCC) to two key cloud-controlling factors,
the strength of the inversion capping the atmospheric bound-
ary layer (measured by the estimated inversion strength, EIS)
and sea surface temperature (SST). These parameters were
developed as part of a heuristic model used to interpret
change in LCC simulated in GCMs. The heuristic model’s
premise is that simulated LCC changes can primarily be in-
terpreted as a linear combination of contributions from EIS
and SST. For a given GCM, the respective contributions of
EIS and SST are computed by multiplying (1) the sensitiv-
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ity of LCC to EIS and SST variations by (2) the climate-
change signal in EIS or SST. The heuristic model is remark-
ably skillful, capturing a large portion of the variance of LCC
changes across different GCMs. In particular, its SST term
dominates, accounting for much of the spread in simulated
LCC changes.

The sensitivities of LCC to SST and EIS (referred to
as the SST and EIS slopes, respectively) were computed
based on interannual variability in the 20th century via mul-
tiple regression analysis and for each of five low-cloud-
dominated oceanic regions. Figure 12 shows the EIS slope
(0LCC/QEIS) and the SST slope (dLCC/dSST) in 36
CMIP3 and CMIP5 models and the observations. Accord-
ing to the observations, slopes are negative for SST and
positive for EIS. This suggests that LCC decreases with
increasing SST but increases with increasing EIS. Model-
simulated slopes generally have signs consistent with the ob-
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servations but underestimate the magnitudes of both SST and
EIS slopes. The observational slopes were computed based
on ISCCP cloud data (Rossow and Schiffer, 1999), ERA-
Interim reanalysis (Dee et al., 2011) and NOAA optimum
interpolation monthly SST version 2 (Reynolds et al., 2002)
during the period 1984-2009.

3.10 Lower Tropospheric Mixing Index (Sherwood et

al., 2014)
This code 1is available at
LTMI-mixing.

The Lower Tropospheric Mixing Index (LTMI) proposed
by Sherwood et al. (2014) was found to be empirically re-
lated to climate sensitivity in both the CMIP3 and CMIP5
models. The mixing diagnosed via this index is intended to
capture vertical mixing not directly associated with precipi-
tation production, such that the LTMI can also be interpreted
as a measure of bulk precipitation inefficiency. Sherwood et
al. (2014) argued that the relationship seen between LTMI
and climate sensitivity arises because a high LTMI implies
that upward moisture fluxes within the troposphere will in-
crease relatively strongly with temperature, producing more
positive global net cloud feedback by inhibiting the condi-
tions necessary for low-cloud formation. The LTMI consists
of two components, which represent two scales of vertical
mixing: small-scale vertical mixing (S) within a single grid
column of the model, involving model parameterizations di-
rectly, and large-scale mixing (D) via explicitly resolved,
shallow overturning circulations. S is diagnosed from ver-
tical gradients of humidity and temperature over warm trop-
ical oceans at altitudes around the typical marine boundary-
layer top, while D is calculated explicitly from model pres-
sure velocity fields in the lower and middle troposphere. Both
quantities were obtained from annual-mean data over tropi-

https://github.com/scs46/
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cal oceans, with only 2 years giving reasonably stable results
compared to the large differences in mixing rates between
models, although we recommend longer time periods. Fig-
ure 14 shows the relationship of ECS with S, D and the LTMI
(the sum of S and D). Observations of S and D were ob-
tained in that study from radiosonde and reanalysis data. The
ranges of D and S are similar (Fig. 13a, b), and the LTMI
explains about 50 % of the variance in total system feedback
(r =0.70) and ECS (r =0.68; Fig. 13c); thus, LTMI explains
a significant portion of the model spread. In the observations,
S shows near the middle of the GCM range, but D close to
the top end, which suggests the existence of mid-level out-
flows stronger than models.

3.11 Application to understanding and model
development

Here two examples are presented of how the metrics and
diagnostics described in the previous section are applied to
models during their development.

Bodas-Salcedo et al. (2012) applied cloud regime analy-
sis in this catalogue (Sect. 3.2) and diagnosed cloud regimes
around cyclone centres over the Southern Ocean in observa-
tions and in an atmospheric-only configuration (GA2.0) of
the Met Office Unified Model. The motivation for this study
was to investigate the role of clouds in the long-standing bias
of surface downwelling shortwave radiation over the region.
They found that low- and mid-level clouds in the cold-air
sector of the cyclones are responsible for most of the bias
(Fig. 14). Based on this analysis, a new diagnosis of shear-
dominated boundary layers was developed and was included
in a newer configuration of the model.

Kamae et al. (2016) applied two diagnostics in this
catalogue to a Multi-Parameter Multi-Physics Ensemble
(MPMPE), which consists of both parametric and structural
uncertainties in parameterizations of cloud, cumulus convec-
tion and turbulence to investigate relationships between the
LTMI and equilibrium climate sensitivity (Sect. 3.11). Sig-
nificant correlations were found in all of the perturbed pa-
rameter ensembles (PPEs) with different physics schemes
but using an old convective scheme, but not in PPEs which
used a new convective scheme. To understand the difference
they used the cloud radiative kernels (Sect. 3.3) and broke
down the differences into contributions from different cloud
types. In both subsets of ensembles with different convective
schemes they found significant positive correlations between
small-scale mixing (Mgman) and low-level cloud shortwave
feedback (Asweld), i.e. the larger the mixing, the more posi-
tive the cloud feedback. Although middle-level cloud short-
wave feedbacks also have significant correlations with Mgmar
in both ensembles, their signs of the correlation are the op-
posite, negative in the PPEs with the new convective scheme
and positive in the PPEs with the old convective scheme
(Fig. 15). In the PPEs with the new convective scheme, the
relationships of low-level cloud feedback and middle-level
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cloud feedback to small-scale mixing are opposite, and hence
cancel each other. As a result, the climate sensitivity has no
significant correlation with the LTMI. They suggest that a
different mechanism other than lower tropospheric mixing
could control middle-level cloud feedback, and there is there-
fore a need to develop an alternative emergent constraint.

4 Discussion

We have described the metrics and diagnostics that are cur-
rently available in the CFMIP Diagnostic Codes Catalogue
and have provided examples of their application to model
evaluation. These examples demonstrate the value of these
diagnostics in understanding and reducing errors in repre-
senting clouds in climate models.

We envisage the metrics and diagnostics in this cata-
logue being used extensively for model evaluation studies
in CMIP6, particularly as part of CFMIP. The ISCCP cloud
histograms defined in terms of cloud-top pressure and cloud
optical thickness have been used to understand both model
errors and feedbacks in different cloud types and regimes
(Klein et al., 2013; Williams and Webb, 2009; Tsushima et
al., 2013, 2015; Zelinka et al., 2012). Some of these stud-
ies use instantaneous, i.e. time-step, data (e.g. Konsta et al.,
2015; Suzuki et al., 2015), the motivation being to under-
stand physical processes, as this is known to be important
for understanding cloud feedbacks (e.g. Gettleman and Sher-
wood, 2016).
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As the spread in low-cloud feedbacks in the tropics was a
large contribution to the spread in climate sensitivity in both
IPCC AR4 (Randall et al., 2007) and IPCC AR5 (Boucher
et al., 2013), many studies have focussed on the representa-
tion of low clouds and their associated feedbacks in climate
models. Indeed, about half of the diagnostics in the current
catalogue are targeted at low-level clouds (Nam et al., 2012;
Qu et al., 2014; Sherwood et al., 2014; Brient and Schnei-
der, 2016; Suzuki et al., 2015). These studies have provided
insights into three long-standing problems in GCMs.

a. The too few, too bright problem. Low clouds in GCMs
have larger reflectance but a smaller cloud amount than
the observations. Cloud reflectance sorted by cloud
amount showed that models overestimate the cloud ra-
diative effects compared to observations, even for com-
parable cloud amounts (Nam et al., 2012). Konsta et
al. (2015) confirmed this at the instantaneous timescale.
The tropical low-level cloud properties are grouped into
two clusters according to the observations. One clus-
ter corresponds to cumulus-type clouds (with low-cloud
fraction and low-cloud reflectance), while the other cor-
responds to stratocumulus-type clouds (with an almost
overcast cloud fraction and with large cloud reflectance
values). However, in two versions of the LMDZ climate
model (Dufresne et al., 2013; Hourdin et al., 2013a, b),
these properties are not reproduced. The clouds with
small cloud cover have overly large reflectance val-
ues and clouds with a cover close to one are overesti-
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Figure 11. Observed and simulated covariance of TLC reflec-
tion with surface temperature. Twenty-nine CMIP5 models are
used. Intra-annual (<1 year), seasonal (1 year), and interannual
(>1 year) frequency bands are distinguished. The regression co-
efficients dac/§(T) are shown with their modes (most likely val-
ues) and 66 and 90 % confidence intervals, for observations, 14 HS
climate models, and 15 LS GCMs. Angle brackets () denote the
mean over the TLC regions. For the models, da.c/3(T) is also shown
for global-warming simulations, calculated from the cloud reflec-
tion and temperature differences in the TLC regions between years
130149 and years 2-11 after an abrupt quadrupling of carbon diox-
ide concentrations. For the global-warming simulations, the corre-
sponding approximate confidence intervals (0.95¢ and 1.650) ob-
tained from the standard deviation o of Sa¢/8(T) among the HS
and LS models are shown, with the bar marking the multimodel
median. The upper axis indicates —(/)dcc/6(T"), which approxi-
mates the variation of the shortwave cloud radiative effect (S¢) with
temperature, 5(Sc)/86(T). (I) is the regional mean solar insolation.
Reprinted from Brient and Schneider (2016), © American Meteoro-
logical Society. Used with permission.

mated. Deficiencies which were highlighted in Nam et
al. (2012) to explain the overestimate of the low-cloud
radiative effect are a misrepresentation of the horizontal
inhomogeneity of cloud optical properties and the verti-
cal overlap of cloud layers. In addition, 3-D effects have
a significant impact on the solar reflection, and a fast al-
gorithm to account for this in global atmospheric mod-
els is being developed (Hogan et al., 2016). Tsushima
et al. (2015) confirmed the overestimate of in-cloud
albedo by comparing daily ISCCP cloud regime data
with the regimes simulated in five current models. In the
stratocumulus regime, models simulate smaller cloud
amounts than those observed because broken cloud sit-
uations tend to occur more frequently than overcast sit-
uations, in contrast to the observations. The too frequent

Geosci. Model Dev., 10, 4285-4305, 2017

EIS slope

Y. Tsushima et al.: The CFMIP Diagnostic Codes Catalogue

CMIP3 | CMIPS
| E
o
:“ols_!. s =
° e 3 - [] A
ETTIEC LA LA TN
@ Can L
TrTTTTTTTTT T T T T T T T T T T T
MNOPQRabc¢cdefghijklImnopgqgr
SST slope
CMIP3 | CMIPS E
a B
° . E
T 77’1—'&‘.'14Tf.~ ******** 3._
e " eSel S 2859388 &
° 0 H s
FrTTrTTTTTT T T T T T T T T T T T T T TTTTT
JKLMNOPQRabcC¢cdefghijklmnopgqgr

Figure 12. (a) The EIS slope (JLCC/9EIS); (b) the SST slope
(0LCC/0aSST) in the five oceanic regions from 36 models in the
20th century and from the observations. Note that the observational
slope values (solid lines) are the averages over the five regions.
Reprinted with permission from Qu et al. (2014).

occurrence of broken clouds contributes more to the
positive bias in reflectance for the stratocumulus regime
than the overestimate in reflectivity for a given cloud
cover. Further investigation of the reasons for the un-
derestimate of overcast cases in models is necessary.

b. Vertical profile of low-level clouds. Nam et al. (2012)
showed that GCMs poorly represent the vertical struc-
tures of low-level clouds. Sherwood et al. (2014)
showed lower tropospheric mixing in GCMs is smaller
than in observations and suggest that most models un-
derestimate climate sensitivity. The mixing consists of
small-scale mixing by convective and other parameter-
izations (e.g. Brient et al., 2016) and large-scale mix-
ing by large-scale circulations. Whether this mixing is
achieved in practice in a model will depend upon the
precise details of the convection scheme, in particular
the model’s ability to represent shallow convection.

CFODDs (Suzuki et al., 2015) diagnose the cloud-rain
conversion process which is related to the vertical distri-
bution of lower tropospheric humidity. These diagrams
show that the formation of rain from cloud droplets in
GCMs (often referred to as auto-conversion) happens
much faster than it does in the observations. In ad-
dition, convection schemes in GCMs tend to convert
extra moisture into precipitation immediately. Zhao et
al. (2016) used a developmental version of the next-
generation Geophysical Fluid Dynamics Laboratory
GCM and constructed a tightly controlled set of GCMs
where only the formulation of convective precipitation
is changed. They demonstrated that model estimates of
climate sensitivity can be strongly affected by the rain
formation process in a model’s convection parameteri-
zation. The model differences are dominated by short-
wave feedbacks and come from broad regimes ranging
from large-scale ascent to subsidence regions. Better
representation of these processes could therefore help
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respectively. Two observational estimates for LTMI with error bars
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filled square and diamond. Reprinted from Sherwood et al. (2014).

to improve simulations of the vertical profiles of lower
tropospheric humidity and clouds.

c. Low cloud amount change with SST increase. Both
GCMs and process models tend to produce positive
low-cloud feedbacks through a reduction of low cloud
amount. However, deficiencies in the representation of
low clouds in GCMs, as well as a lack of observa-
tional constraints, means that the sign of the low-cloud
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feedback is still very uncertain (Boucher et al., 2013).
Positive low-cloud feedback in the observations in all
timescales was shown by Brient and Schneider (2016).
Qu et al. (2014) showed that interannual variations of
low cloud cover decrease with increasing SST in the
observations, and confirmed that models tend to re-
produce this decrease in both historical and climate
change simulations. They also found that inter-model
variance of low cloud changes in climate change sim-
ulations is dominated by the inter-model differences in
the SST increase and the sensitivity to SST. Why then
does low cloud amount decrease with increasing SST
in GCMs? The mechanism proposed by Sherwood et
al. (2014) is that intensification of lower tropospheric
mixing could dry the boundary layer and reduce cloud
amount. These observational constraints of low cloud
amount feedback suggest larger positive cloud feedback
and hence higher climate sensitivity. These diagnostics,
which identify a source of error in GCMs that relates
to climate predictions, merit attention from those devel-
oping climate models and climate observations (Klein
and Hall, 2015). The possible contributions of other fac-
tors to the low cloud cover change should also be exam-
ined (e.g. Webb and Lock, 2013). In large-eddy simu-
lations (LES) at stratocumulus locations, the cloud re-
mains overcast but thins in the warmer, moister, CO2-
enhanced climate, due to the combined effects of an
increased lower-tropospheric vertical humidity gradient
and an enhanced free-tropospheric greenhouse effect
that reduces the radiative driving of turbulence (Brether-
ton et al., 2013). Mechanisms of low-level cloud amount
change in warming climate are still not well under-
stood, and further investigations combining observa-
tions, GCMs and process models are necessary.

Although there is a significant correlation between LTMI
and ECS in both the CMIP3 and CMIP5 models, its cor-
relation with cloud radiative feedback is weaker. Kamae et
al. (2016)’s investigation of the lower tropospheric mixing
using MPMPEs found that small-scale mixing has a signif-
icant correlation with low-level cloud shortwave feedbacks
and also that the sign of the correlation is robust across
the ensembles. Although correlations were also found with
middle-level cloud shortwave feedback, the signs are not
robust among the different physics ensembles. Zelinka et
al. (2012) showed that high cloud changes induce wider
ranges of LW and SW cloud feedbacks across models than do
low clouds. Zhao et al. (2016)’s study suggests that changes
in convective clouds may be as important as those in low
clouds in determining climate sensitivity. Hence develop-
ment of diagnostics and emergent constraints associated with
different cloud types and processes would be helpful.
Underestimation of middle-top clouds has been a common
bias in climate models (Zhang et al., 2005; Tsushima et al.,
2014), but its implication for cloud feedbacks is currently not

Geosci. Model Dev., 10, 4285-4305, 2017
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well understood. Watanabe et al. (2012) found that MIROCS
underestimates middle-top clouds much less than MIROC3
and that the cloud feedback in MIROCS is much less posi-
tive than in MIROC3. One of the main reasons for this is an
increase in middle-top clouds in response to global warming
in MIROCS. Greater understanding of middle-level clouds
and their associated feedbacks will be useful.

For high clouds, the Fixed Anvil Temperature (FAT) mech-
anism (Hartmann and Larson, 2002) suggests that the tem-
perature of the detrained tropical anvils associated with deep
convection remains unchanged in a warming climate, im-
plying that the cloud altitude feedback is positive. This
mechanism, however, does not explain whether the cloud
amount will increase or decrease. In addition, high thin cir-
rus which spreads into the tropical transition layer may be
associated with different feedback mechanisms. High cloud
amount tends to decrease in current conventional GCMs

Geosci. Model Dev., 10, 4285-4305, 2017

(Zelinka et al., 2012), but a global cloud-resolving model
shows an increase (Tsushima et al., 2014), suggesting that
the response could be dependent on certain parameterization
schemes, in particular convection and microphysics. Fur-
ther evaluation of high clouds and examination of possible
high cloud amount feedback mechanisms will clearly be nec-
essary. Radar and lidar reflectivity—height histograms from
CloudSat and CALIPSO were used to evaluate cloud amount
and vertical profiles of high clouds (Kodama et al., 2012;
Williams et al., 2015). Histograms such as these and other
diagnostics using these data should be useful for this work.
With regard to physical processes, changes in the thermo-
dynamic phase in some clouds are expected in a warming
climate (Senior and Mitchell, 1993). Tsushima et al. (2006)
highlighted the importance of evaluating the ratio of ice and
liquid in mixed-phase clouds in simulations of the current cli-
mate because it determines how large the phase change might
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be under climate change. An underestimate of the relative
amount of supercooled liquid water has been found in GCMs
(Cesana et al., 2015; Tan et al., 2015). Tan et al. (2015)
demonstrated that, as a consequence of the larger increase
in liquid water from excessive ice water in the control cli-
mate, models could underestimate climate sensitivity. Bodas-
Salcedo et al. (2016) used a cyclone-composite technique,
and quantified the contribution of different regions around
cyclone centres to the solar radiation budget and the feed-
back over the Southern Ocean. These methodologies and di-
agnostics could be useful for evaluating mixed-phase clouds
in models.

Understanding clouds and cloud feedbacks as a part of dy-
namical systems and their response to climate change will
also be important. Some dynamical responses are known
to be robust among GCMs, such as the expansion of the
Hadley cell (e.g. Seidel et al., 2008; Johanson and Fu, 2009)
and the poleward shift of the mid-latitude jets (e.g. Yin,
2005; Wu et al., 2011; Barnes and Polvani, 2013). Grise and
Polvani (2016) investigated the impact of these dynamical
responses to climate sensitivity using CMIP5 models and
found that in the Southern Hemisphere inter-model differ-
ences in the value of ECS explain ~ 60 % of the inter-model
variance in the annual-mean Hadley cell expansion but just
~20 % of the variance in the annual-mean mid-latitude jet
response. Tselioudis et al. (2016) investigated the relation-
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ship between interannual variations of the latitudinal position
of clouds and their radiative effects and those in the Hadley
cell and the mid-latitude jets. They found that the interannual
variations of the locations of high clouds and the Hadley cell
are correlated significantly, but did not find a robust correla-
tion between clouds and the mid-latitude jets. Development
of diagnostics which evaluate the representation of clouds
within the major large-scale dynamical systems and their
variations will therefore be useful. Metrics that explicitly in-
clude measures of circulation or water vapour and their re-
lationships with clouds (e.g. the vapour—cloud relationships
described by Bennhold and Sherwood, 2008) are likely to aid
the understanding of cloud errors in models.

This paper describes only those emergent constraints
which are currently included in the catalogue. Various emer-
gent constraints for ECS have been proposed using both the
CMIP3 and CMIP5 models (Klein and Hall, 2015), and more
will undoubtedly be developed in the future. Development of
emergent constraints for climate sensitivity or particular cli-
mate feedbacks which are underpinned by clear hypotheses
and related to physical processes will be required.

We anticipate that the CFMIP diagnostic codes catalogue
will continue to expand and invite additional contributions
to further support the community to analyse CMIP6 outputs
and to help develop and improve our understanding of cloud
processes and cloud feedbacks.
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Code availability. Each repository is linked to the CFMIP web-
page and can be found on the diagnostics code page there: https://
www.earthsystemcog.org/projects/cfmip/. The following page also
has links to metrics that are included in the catalogue: https:
//github.com/tsussi/cfmip-diagnostics-code-repository. CMIP data
are available through the PCMDI CMIP page: http://www-pcmdi.
lInl.gov/projects/cmip/. CFMIP1 and CFMIP2 data can be found
under CMIP3 and CMIPS, respectively.
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